Evocalcet, エボカルセト , Эвокальцет , إيفوكالسيت , 依伏卡塞 ,

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Evocalcet.pngImage result for EvocalcetEvocalcet.svg

Evocalcet

C24H26N2O2,  374.484 

Evocalcet; UNII-E58MLH082P; E58MLH082P; 870964-67-3; Evocalcet [INN]; Orkedia (TN)
エボカルセト

Эвокальцет [Russian] [INN]

إيفوكالسيت [Arabic] [INN]
依伏卡塞 [Chinese] [INN]
2-[4-[(3S)-3-[[(1R)-1-naphthalen-1-ylethyl]amino]pyrrolidin-1-yl]phenyl]acetic acid
KHK-7580
MT-4580
UNII:E58MLH082P
{4-[(3S)-3-{[(1R)-1-(1-Naphthyl)ethyl]amino}-1-pyrrolidinyl]phenyl}acetic acid
10098
870964-67-3 [RN]
Benzeneacetic acid, 4-[(3S)-3-[[(1R)-1-(1-naphthalenyl)ethyl]amino]-1-pyrrolidinyl]-
E58MLH082P
KHK-7580 / KHK7580 / MT-4580

Image result for Evocalcet

エボカルセト
Evocalcet

C24H26N2O2 : 374.48
[870964-67-3]

WP_000286

KHK 7580 …..example

3.008
Figure US20140080770A1-20140320-C00373
Figure US20140080770A1-20140320-C00374
Figure US20140080770A1-20140320-C00375
2HCl MS · APCI: 375[M + H]+

Figure imgb0350

in EP1757582

4-(3S-(1R-(1-naphthyl)ethylamino)pyrrolidin-1- yl)phenylacetic acid

4-[(3S)-3-[[(1R)-1-(1-naphthalenyl)ethyl]amino]-1-pyrrolidinyl]-Benzeneacetic acid,

BASE ….870964-67-3

DI HCL SALT …….870856-31-8

MF C24 H26 N2 O2 BASE

MW 374.48 BASE

KHK-7580

KHK-7580; MT-4580

Mitsubishi Tanabe Pharma Corp… innovator

Kyowa Hakko Kirin Co Ltd.. licencee

4-(3S-(1R-(1-naphthyl)ethylamino)pyrrolidin-1-yl)phenylacetic acid,

Evocalcet (trade name Orkedia) is a drug for the treatment of hyperparathyroidism.[1] It acts as a calcium-sensing receptor agonist.[2]

In 2018, it was approved in Japan for treatment of secondary hyperparathyroidism in patients on dialysis.[3]

useful as calcium-sensitive receptor (CaSR) agonists for treating hyperparathyroidism.  a CaSR agonist, being developed by Kyowa Hakko Kirin, under license from Mitsubishi Tanabe, for treating secondary hyperparathyroidism (phase 2 clinical, as of March 2015).

WO2005115975,/EP1757582

http://www.google.co.in/patents/EP1757582A1?cl=en

Example no

3.008
Figure US20140080770A1-20140320-C00373
Figure US20140080770A1-20140320-C00374
Figure US20140080770A1-20140320-C00375
2HCl MS · APCI: 375[M + H]+

Figure imgb0350

WO 2015034031A1

http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacenet.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20150312&CC=WO&NR=2015034031A1&KC=A1

Mitsubishi Tanabe Pharma Corporation

The present invention provides a novel crystal form of an arylalkylamine
compound. Specifically, a novel crystal form of
4-(3S-(1R-(1-naphthyl)ethylamino)pyrrolidin-1- yl)phenylacetic acid has
excellent stability, and is therefore useful as an active ingredient for
a medicine. The present invention also provides an industrially
advantageous method for producing an arylalkylamine compound.

WP_000287

WO 2015034031A1

http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacenet.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20150312&CC=WO&NR=2015034031A1&KC=A1
Mitsubishi Tanabe Pharma Corporation

The present invention provides a novel crystal form of an arylalkylamine compound. Specifically, a novel crystal form of 4-(3S-(1R-(1-naphthyl)ethylamino)pyrrolidin-1- yl)phenylacetic acid has excellent stability, and is therefore useful as an active ingredient for a medicine. The present invention also provides an industrially advantageous method for producing an arylalkylamine compound.

 

PATENT

http://www.google.co.in/patents/US20140080770?cl=und

Reference Example 3.001

Figure US20140080770A1-20140320-C00042

(1) To a mixed solution containing 33.5 g of 3-hydroxypiperidine and 62.7 ml of triethylamine dissolved in 250 ml of methylene chloride was added dropwise a solution of 55.7 ml of benzyloxycarbonyl chloride in 150 ml of methylene chloride, and the mixture was stirred at room temperature for 16 hours. To the reaction mixture were added a saturated aqueous citric acid and chloroform, the mixture was stirred and the liquids were separated. The organic layer was dried, the solvent was evaporated, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=4:1→0:1) to obtain 75.5 g of benzyl 3-hydroxypiperidine-1-carboxylate.

MS•APCI (m/z): 236 [M+H]+

(2) 800 ml of a solution of 52.4 ml of oxalyl chloride in methylene chloride was cooled to −78° C., 53.2 ml of DMSO was added dropwise to the solution, and the mixture was stirred at −78° C. for 0.5 hour. A solution of 75.5 g of benzyl 3-hydroxypiperidine-1-carboxylate dissolved in 200 ml of methylene chloride was added dropwise to the mixture, and further 293 ml of triethylamine was added dropwise to the same, and the mixture was stirred for 16 hours while a temperature thereof was gradually raised to room temperature. To the reaction mixture were added a saturated aqueous sodium bicarbonate solution and chloroform, the mixture was stirred and the liquids were separated. The organic layer was dried and concentrated to obtain 83.7 g of 1-benzyloxycarbonyl-3-piperidone. MS•APCI (m/z): 234 [M+H]+
(3) To a solution of 83.7 g of 1-benzyloxycarbonyl-3-piperidone dissolved in 1.2 liters of methylene chloride was added 55.0 g of (R)-(+)-1-(1-naphthyl)ethylamine, and after the mixture was stirred at room temperature for 2 hours, 69 ml of acetic acid and 160 g of sodium triacetoxy borohydride were added to the mixture, and the mixture was stirred at room temperature for 15 hours. To the reaction mixture was added an aqueous sodium hydroxide to make the mixture basic, and then, chloroform was added to the mixture, the mixture was stirred and the liquids were separated. The organic layer was dried and concentrated, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=4:1→0:1) to obtain 98.7 g of benzyl 3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate. MS•APCI (m/z): 389 [M+H]+
(4) To a solution of 40.95 g of triphosgene dissolved in 800 ml of methylene chloride was added dropwise a mixed solution containing 80.6 g of benzyl 3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate and 86.6 ml of triethylamine dissolved in 200 ml of methylene chloride at 0° C., and the mixture was stirred at room temperature for 16 hours. To the reaction mixture was added water, the mixture was stirred and the liquids were separated. The organic layer was dried and concentrated, and the residue was washed with 200 ml of diethyl ether, and the crystal collected by filtration was recrystallized from chloroform and diethyl ether to obtain 48.9 g of benzyl (R)-3-[chlorocarbonyl-(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate.

Further, the filtrate was purified by silica gel column chromatography (hexane:ethyl acetate=8:1→0:1) to obtain 5.82 g of benzyl (R)-3-[chlorocarbonyl-(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate and 14.5 g of benzyl (S)-3-[chlorocarbonyl-(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate.

(5) To a solution containing 54.6 g of benzyl (R)-3-[chlorocarbonyl-(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate dissolved in 700 ml of tetrahydrofuran was added 350 ml of water, and the mixture was stirred under reflux for 15 hours. After tetrahydrofuran was evaporated, a saturated aqueous sodium bicarbonate solution and chloroform were added thereto, the mixture was stirred and the liquids were separated. The organic layer was dried and concentrated, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=4:1→0:1) to obtain 24.3 g of benzyl (R)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate. MS•APCI (m/z): 389 [M+H]+
(6) To a solution containing 24.2 g of benzyl (R)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate dissolved in 250 ml of methanol was added 2.5 g of palladium carbon (10% wet), and the mixture was shaked under hydrogen atmosphere at 3 atm at room temperature for 40 hours. Palladium carbon was removed, and the solvent was evaporated, the residue was washed with ethyl acetate-chloroform (10:1), and collected by filtration to obtain 15.3 g of (R)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine (the following Reference example Table, Reference example 3.001(a)). MS•APCI (m/z): 255 [M+H]+
(7) By using 14.5 g of benzyl (S)-3-[chlorocarbonyl-(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate, the same treatment was carried out as in the above-mentioned (5) to obtain 4.74 g of benzyl (S)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate. MS•APCI (m/z): 389 [M+H]+

Moreover, by using 4.7 g of benzyl (S)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine-1-carboxylate, the same treatment was carried out as in the above-mentioned (6) to obtain 2.89 g of (S)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine. MS•APCI (m/z): 255 [M+H]+

(8) To a solution of 3.46 g of (S)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine dissolved in 15 ml of methanol was added dropwise 20 ml of a solution of 4M hydrochloric acid in ethyl acetate, and the mixture was stirred. The reaction mixture was concentrated under reduced pressure, diethyl ether was added to the residue, washed and dried to obtain 3.33 g of (S)-3-[(R)-1-(naphthalen-1-yl)ethylamino]piperidine dihydrochloride

3.008
Figure US20140080770A1-20140320-C00373
Figure US20140080770A1-20140320-C00374
Figure US20140080770A1-20140320-C00375
2HCl MS · APCI: 375[M + H]+
TABLE A3
Figure US20140080770A1-20140320-C00350
Example No. R1—X—
Figure US20140080770A1-20140320-C00351
—Ar Salt Physical properties, etc.

CLIP

see all at   http://drugpatentsint.blogspot.in/2015/03/wo-2015034031.html

see all at   http://drugpatentsint.blogspot.in/2015/03/wo-2015034031.html

see all at   http://drugpatentsint.blogspot.in/2015/03/wo-2015034031.html

see all at   http://drugpatentsint.blogspot.in/2015/03/wo-2015034031.html
see all at   http://drugpatentsint.blogspot.in/2015/03/wo-2015034031.html

do not miss out on above click

 http://www.kyowa-kirin.com/research_and_development/pipeline/

KHK7580 -Secondary Hyperparathyroidism

JP

Company Mitsubishi Tanabe Pharma Corp.
Description Calcium receptor agonist
Molecular Target
Mechanism of Action Calcium-sensing receptor (CaSR) agonist
Therapeutic Modality Small molecule
Latest Stage of Development Phase II
Standard Indication Thyroid disease
Indication Details Treat hyperparathyroidism in patients receiving hemodialysis; Treat secondary hyperparathyroidism (SHPT)
Regulatory Designation
Partner

Kyowa Hakko Kirin Co. Ltd.

August 29, 2014

Kyowa Hakko Kirin Announces Commencement of Phase 2b Clinical Study of KHK7580 in Patients with Secondary Hyperparathyroidism in Japan

Tokyo, Japan, August 29, 2014 — Kyowa Hakko Kirin Co., Ltd. (Tokyo: 4151, President and CEO: Nobuo Hanai, “Kyowa Hakko Kirin”) today announced the initiation of a phase 2b clinical study evaluating KHK7580 for secondary hyperparathyroidism patients receiving hemodialysis in Japan.

This randomized, placebo-controlled, double-blind, parallel-group, multi-center study is designed to evaluate efficacy and safety in cohorts comprising KHK7580, its placebo and cinacalcet and initial dose of KHK7580 for secondary hyperparathyroidism patients receiving hemodialysis.

KHK7580 is a small molecular compound produced by Mitsubishi Tanabe Pharma Corporation (President & Representative Director, CEO: Masayuki Mitsuka, “Mitsubishi Tanabe Pharma”). Kyowa Hakko Kirin signed a license agreement of KHK7580 with Mitsubishi Tanabe Pharma for the rights to cooperative research, develop, market and manufacture the product in Japan and some part of Asia on March 2008.

The Kyowa Hakko Kirin Group is contributing to the health and prosperity of the world’s people by pursuing advances in life sciences and technology and creating new value.

Outline of this study

CLINICALTRIALS.GOV IDENTIFIER New window opensNCT02216656
TARGET POPULATION Secondary hyperparathyroidism patients receiving hemodialysis
TRIAL DESIGN Randomized, placebo-controlled, double-blind (included open arm of cinacalcet), parallel-group, multi-center study
ADMINISTRATION GROUP KHK7580, Placebo, cinacalcet
TARGET NUMBER OF SUBJECTS 150
PRIMARY OBJECTIVE Efficacy
TRIAL LOCATION Japan
TRIAL DURATION Jul. 2014 to Jun. 2015

Contact:

Kyowa Hakko Kirin
Media Contact:
+81-3-3282-1903
or
Investors:
+81-3-3282-0009

Update on march 2016

New comment waiting approval on New Drug Approvals

M.F. Balandrin commented on KHK 7580 structure cracked

KHK 7580 …..example 3.008 2HCl MS · APCI: 375[M + H]+ in …

The calcimimetic agent, KHK-7580, currently entering Phase III clinical trials, has now been given the INN (WHO) generic name, evocalcet. Its chemical structure has also now been published and it is, in fact, correct as proposed by Dr. Crasto (Well Done!!):

http://www.drugspider.com/drug/evocalcet

https://tripod.nih.gov/ginas/app/substance/f580b9fd

http://www.medkoo.com/products/6729

(Etymologically, in classical Latin, “evolutio” refers to “the unrolling of a scroll” and “evocare” refers to a “call out”…).

http://www.medkoo.com/products/6729

img

Name: Evocalcet
CAS#: 870964-67-3
Chemical Formula: C24H26N2O2
Exact Mass: 374.19943

Evocalcet is a calcium-sensing receptor agonist. The calcium-sensing receptor (CaSR) is a Class C G-protein coupled receptor which senses extracellular levels of calcium ion. The calcium-sensing receptor controls calcium homeostasis by regulating the release of parathyroid hormone (PTH). CaSR is expressed in all of the organs of the digestive system. CaSR plays a key role in gastrointestinal physiological function and in the occurrence of digestive disease. High dietary Ca2+ may stimulate CaSR activation and could both inhibit tumor development and increase the chemotherapeutic sensitivity of cancer cells in colon cancer tissues. (Last update: 12/15/2015).

Synonym: MT-4580; MT 4580; MT4580; KHK-7580; KHK7580; KHK 7580; Evocalcet

IUPAC/Chemical Name: 2-(4-((S)-3-(((R)-1-(naphthalen-1-yl)ethyl)amino)pyrrolidin-1-yl)phenyl)acetic acid

2

https://tripod.nih.gov/ginas/app/substance/f580b9fd

Structure of EVOCALCET

http://www.drugspider.com/drug/evocalcet

INN NAME
Evocalcet
LAB CODE(S)
MT-4580
KHK-7580
CHEMICAL NAME
{4-[(3S)-3-{[(1R)-1-(Naphthalen-1-yl)ethyl]amino}pyrrolidin-1-yl]phenyl}acetic acid
CHEMICAL STRUCTURE
MOLECULAR FORMULA
C24H26N2O2
SMILES
O=C(O)CC1=CC=C(N2C[C@@H](N[C@@H](C3=C4C=CC=CC4=CC=C3)C)CC2)C=C1
CAS REGISTRY NUMBER
870964-67-3
ORPHAN DRUG STATUS
No
ON FAST TRACK
No
NEW MOLECULAR ENTITY
Yes
ORIGINATOR
DEVELOPER(S)
CLASS
MECHANISM OF ACTION
WHO ATC CODE(S)
EPHMRA CODE(S)
CLINICAL TRIAL(S)
CONDITIONS INTERVENTIONS PHASES RECRUITMENT SPONSOR/COLLABORATORS
Secondary Hyperparathyroidism Drug: KHK7580 Phase 3 Recruiting Kyowa Hakko Kirin Company, Limited
Secondary Hyperparathyroidism Drug: KHK7580 Phase 3 Recruiting Kyowa Hakko Kirin Company, Limited
Secondary Hyperparathyroidism Drug: KHK7580|Drug: KRN1493 Phase 2|Phase 3 Recruiting Kyowa Hakko Kirin Company, Limited
Secondary Hyperparathyroidism Drug: Placebo|Drug: KHK7580 low dose|Drug: KHK7580 middle dose|Drug: KHK7580 high dose|Drug: KRN1493 Phase 2 Completed Kyowa Hakko Kirin Company, Limited
Hyperparathyroidism Drug: KHK7580 Phase 1|Phase 2 Completed Kyowa Hakko Kirin Company, Limited
Secondary Hyperparathyroidism Drug: KHK7580 Phase 1 Completed Kyowa Hakko Kirin Company, Limited
UPDATED ON
11 Oct 2015

CLIP

https://www.sciencedirect.com/science/article/pii/S0960894X18303676

Image result for Evocalcet

Scheme 1. Synthesis of key intermediates S4S5S9, and S10. Reagents and conditions: (a) Tf2O, i-Pr2NEt, CH2Cl2, −20 °C. Then, (R)-(+)-1-(1-naphthyl)ethylamine, −20 °C to rt (S1 57%); (b) triphosgene, Et3N, CH2Cl2, −20 °C to 5 °C. Then, i-Pr2NEt, tert-butanol, 70 °C; (c) separation via silica gel chromatography (S2 31%, S3 33% in 2 steps); (d) HClchloroform1,4-dioxane, rt (S4 > 94%, S5 > 94%); (e) (R)-(+)-1-(1-naphthyl)ethylamine, NaBH(OAc)3acetic acid, CH2Cl2, rt (S6 79%); (f) triphosgene, Et3N, CH2Cl2, 0 °C to rt; (g) separation via filtration and silica gel chromatography (S7 58%, S8 16% in 2 steps); (h) water, tetrahydrofuranreflux; (i) H2, Pd/C, methanol, rt (S9 50% in 2 steps); (j) HCl, ethyl acetate, methanol, rt (S10 31% in 3steps).

Scheme 2. Synthesis of 215 and evocalcet (16). Reagents and conditions: (a) aryl iodide or aryl bromide, palladium acetate, (rac)-BINAP, sodium tert-butoxide, toluene, 80 °C or reflux; (b) HCl, ethyl acetate or 1,4-dioxane, rt; (c) tert-butyl 4-fluorobenzoate, potassium carbonate, DMSO, 130 °C; (d) HCl, 1,4-dioxane, 45 °C; (e) 2-aminoethanol, EDC hydrochlorideHOBt, Et3N, DMF, rt; (f) 5-(4-bromophenyl)-2-(triphenylmethyl)–2H-tetrazole, Pd2(dba)3, (2-biphenyl)di-tert-butylphosphine, sodium tert-butoxide, toluene, rt; (g) HCl, water, 1,4-dioxane, rt; (h) tert-butyl 4-bromobenzoate, palladium acetate, (rac)-BINAP, sodium tert-butoxide, toluene, reflux; (i) trifluoroacetic acid, rt. Then, HCl, ethyl acetate or 1,4-dioxane, rt (2 23%, 3 21%, 4 44%, 5 34%, 620%, 7 55%, 8 29%, 9 21%, 10 19%, 11 40%, 13 26%, 14 69%, 15 69% in 2 steps); (j) 3-(trifluoromethoxy)phenylboronic acid, copper acetate, Et3N, CH2Cl2molecular sieve 4A, rt (S117%); (k) (COCl)2, DMSO, Et3N, CH2Cl2, −60 °C to rt (S12 was used in the next step without purification); (l) (R)-(+)-1-(1-naphthyl)ethylamine, NaBH(OAc)3acetic acid, CH2Cl2, rt. Then, separation of isomers; (m) HCl, ethyl acetate, rt (12 10% in 2 steps); (n) ethyl 4-bromophenylacetate, Pd2(dba)3, (2-biphenyl)di-tert-butylphosphine, sodium tert-butoxide, toluene, rt (S13 63%); (o) aqueous sodium hydroxide solution, ethanol, rt (evocalcet (16) 73%).

evocalcet as a white crystal. MS-APCI (m/z): 375 [M+H]+ .

1H NMR (400 MHz, DMSO-d6) δ 8.25-–8.37 (m, 1H), 7.88–7.97 (m, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.74 (d, J = 6.9 Hz, 1H), 7.39–7.57 (m, 3H), 7.01 (d, J = 8.6 Hz, 2H), 6.38 (d, J = 8.6 Hz, 2H), 4.74 (q, J = 6.4 Hz, 1H), 3.37 (s, 2H), 3.18–3.34 (m, 3H), 3.03–3.15 (m, 1H), 2.89–3.02 (m, 1H), 1.95–2.11 (m, 1H), 1.80–1.94 (m, 1H), 1.40 (d, J = 6.4 Hz, 3H).

Anal. Calcd for C24H26N2O2: C 76.98; H 7.00; N 7.48. Found: C 76.83; H 7.06; N 7.46.

HPLC 99.6% (25.4 min, Inertsil ODS-3V [5 μm, 4.6 × 250 mm], 0.05% TFA in H2O/0.05% TFA in CH3CN [95:5 to 0:100/60 min]).

References

  1. Jump up^ Kawata, Takehisa; Tokunaga, Shin; Murai, Miki; Masuda, Nami; Haruyama, Waka; Shoukei, Youji; Hisada, Yutaka; Yanagida, Tetsuya; Miyazaki, Hiroshi; Wada, Michihito; Akizawa, Tadao; Fukagawa, Masafumi (2018). “A novel calcimimetic agent, evocalcet (MT-4580/KHK7580), suppresses the parathyroid cell function with little effect on the gastrointestinal tract or CYP isozymes in vivo and in vitro”. PLOS ONE13 (4): e0195316. doi:10.1371/journal.pone.0195316PMID 29614098.
  2. Jump up^ Miyazaki, Hiroshi; Ikeda, Yousuke; Sakurai, Osamu; Miyake, Tsutomu; Tsubota, Rie; Okabe, Jyunko; Kuroda, Masataka; Hisada, Yutaka; Yanagida, Tetsuya; Yoneda, Hikaru; Tsukumo, Yukihito; Tokunaga, Shin; Kawata, Takehisa; Ohashi, Rikiya; Fukuda, Hajime; Kojima, Koki; Kannami, Ayako; Kifuji, Takayuki; Sato, Naoya; Idei, Akiko; Iguchi, Taku; Sakairi, Tetsuya; Moritani, Yasunori (2018). “Discovery of evocalcet, a next-generation calcium-sensing receptor agonist for the treatment of hyperparathyroidism”. Bioorganic & Medicinal Chemistry Letters28 (11): 2055–2060. doi:10.1016/j.bmcl.2018.04.055.
  3. Jump up^ “Kyowa Hakko Kirin Launches ORKEDIA® TABLETS (Evocalcet) for the Treatment of Secondary Hyperparathyroidism in Patients on Maintenance Dialysis in Japan” (Press release). Kyowa Hakko Kirin. May 22, 2018.
Evocalcet
Evocalcet.svg
Clinical data
Trade names Orkedia
Identifiers
CAS Number
PubChem CID
DrugBank
UNII
Chemical and physical data
Formula C24H26N2O2
Molar mass 374.48 g·mol−1

///////////////Evocalcet,  エボカルセト , Эвокальцет ,  إيفوكالسيت , 依伏卡塞 , JAPAN 2018, KHK-7580, MT-4580, UNII:E58MLH082P, ORKEDIA

SMILES Code: O=C(O)CC1=CC=C(N2C[C@@H](N[C@@H](C3=C4C=CC=CC4=CC=C3)C)CC2)C=C1

 C[C@H](c1cccc2c1cccc2)N[C@H]3CCN(C3)c4ccc(cc4)CC(=O)O
It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Leave a Reply

Your email address will not be published. Required fields are marked *