Serdexmethylphenidate

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Skeletal formula of serdexmethylphenidate

SERDEXMETHYLPHENIDATE CHLORIDE

Serdexmethylphenidate

  • Molecular FormulaC25H30ClN3O8
  • Average mass535.974 Da

CAS

 

 

L-Serine, N-[[1-[[[[(2R)-2-[(1R)-2-methoxy-2-oxo-1-phenylethyl]-1-piperidinyl]carbonyl]oxy]methyl]-3-pyridiniumyl]carbonyl]-, chloride (1:1)
N-[(1-{[({(2R)-2-[(1R)-2-Methoxy-2-oxo-1-phenylethyl]-1-piperidinyl}carbonyl)oxy]methyl}-3-pyridiniumyl)carbonyl]-L-serine chloride

Azstarys, FDA APPROVED, 3/2/2021, , Type 1 – New Molecular Entity and Type 4 – New Combination

Serdexmethylphenidate Chloride (SDX), SDX or KP145

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212994s000lbl.pdf

 

Serdexmethylphenidate chloride.png

Molecular Formula C25H30ClN3O8
Synonyms

UNII-FN54BT298Y

KP415 Cl

Serdexmethylphenidate chloride

FN54BT298Y

Serdexmethylphenidate chloride (USAN)

Molecular Weight 536 g/mol

CAS 1996626-30-2

(2S)-3-hydroxy-2-[[1-[[(2R)-2-[(1R)-2-methoxy-2-oxo-1-phenylethyl]piperidine-1-carbonyl]oxymethyl]pyridin-1-ium-3-carbonyl]amino]propanoic acid;chloride

Serdexmethylphenidate is a derivative of dexmethylphenidate created by pharmaceutical company KemPharm. The compound is under investigation for the treatment of ADHD in children, adolescents, and adults as of 2020.[2] The drug was approved for medical use by the FDA in March, 2021. Serdexmethylphenidate is a prodrug which has a delayed onset of action and a prolonged duration of effects compared to dexmethylphenidate, its parent compound.

Formulations

Serdexmethylphenidate/dexmethylphenidate (Azstarys), a co-formulation of serdexmethylphenidate and dexmethylphenidate, was approved by the Food and Drug Administration (FDA) in March 2021, for the treatment of ADHD in those above six years of age. Co-formulation of serdexmethylphenidate with dexmethylphenidate allows for a more rapid onset of action while still retaining up to 13 hours of therapeutic efficacy.[3][4]

Due to serdexmethylphenidate’s delayed onset and prolonged duration of effects, several dosage forms containing serdexmethylphenidate have been investigated for use as long-acting psychostimulants in the treatment of ADHD. Under the developmental codename KP484, serdexmethylphenidate has been investigated as a “super-extended duration” psychostimulant, with therapeutic efficacy lasting up to 16 hours following oral administration. In 2011, MonoSol Rx entered into a partnership with KenPharm to develop oral films containing KP415.[5]

Abuse potential

The abuse potential of serdexmethylphenidate is theorized to be lower than other psychostimulants because serdexmethylphenidate is an inactive prodrug of dexmethylphenidate, and must undergo enzymatic metabolism prior to exerting any stimulant effects.[6] Common routes of administration used during the abuse of psychostimulants such as insufflation and intravenous injection have little impact on the pharmacokinetics and metabolism of serdexmethylphenidate and do not result in a faster onset of action.[7]

SYN

 

SYN

US 20200237742

Title

(EN) Serdexmethylphenidate Conjugates, Compositions And Methods Of Use Thereof
front page image

Abstract

(EN)

The present technology is directed to one or more compositions comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof. The present technology also relates to one or more compositions and oral formulations comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof. The present technology also relates to one or more methods of using compositions comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof. The present technology additionally relates to one or more pharmaceutical kits containing a composition comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof.

https://patentscope.wipo.int/search/en/detail.jsf?docId=US300421930&tab=PCTDESCRIPTION&_cid=P10-KNB9J6-93587-1

Synthetic Process for Making Serdexmethylphenidate
      1. Synthesis of nicotinoyl-Ser(tBu)-OtBu
      In one embodiment, the nicotinoyl-Ser(tBu)-OtBu precursor is prepared according to Scheme 1.

 (MOL) (CDX)

      2. Synthesis of d-MPH-N-CO 2CH 2—Cl
      In one embodiment, the d-MPH-N-CO 2CH 2—Cl precursor can be prepared according to Scheme 2.

 (MOL) (CDX)

      In an alternate embodiment, d-MPH-N-CO 2CH 2—Cl can be prepared according to Scheme 3.

 (MOL) (CDX)

      3. Preparation of Protected Serdexmethylphenidate
      In one embodiment, the protected serdexmethylphenidate intermediate can be prepared as shown in Scheme 4.

 (MOL) (CDX)

      In an alternate embodiment, the protected serdexmethylphenidate intermediate can be prepared according to Scheme 5.

 (MOL) (CDX)

      4. Deprotection of Protected Serdexmethylphenidate
      In one embodiment, serdexmethylphenidate chloride can be prepared according to Scheme 6.

 (MOL) (CDX)

      In an alternate embodiment, serdexmethylphenidate chloride can be prepared according to Scheme 7.

 (MOL) (CDX)

      Following deprotection (for example, but not limited to, deprotection methods as illustrated by Scheme 6 or Scheme 7) of a protected serdexmethylphenidate intermediate (for example, but not limited to, the serdexmethylphenidate intermediate prepared according to Scheme 4 or Scheme 5) , crude serdexmethylphenidate can be purified by several methods, including, but not limited to, the method according to Scheme 8.

 (MOL) (CDX)

      An alternative embodiment for preparing serdexmethylphenidate is shown in FIG. 1.
      Novel intermediates are produced during the process of synthesizing serdexmethylphenidate (i.e., process intermediates). These process intermediates may be isolated or form in situ, and include, but are not limited to, 3-(((S)-2-(tert-butoxy)-1-carboxyethyl)carbamoyl)-1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium; tert-butyl O-(tert-butyl)-N-nicotinoyl-L-serinate; chloromethyl (R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carboxylate; and 3-(((S)-1,3-di-tert-butoxy-1-oxopropan-2-yl)carbamoyl)-1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium.
      Novel metabolites and/or novel degradants are produced during the breakdown of serdexmethylphenidate in vitro and/or in vivo. These metabolites and/or degradants include, but are not limited to, 1-((((R)-2-((R)-carboxy(phenyl)methyl)piperidine-1-carbonyl)oxy)methyl)-3-(((S)-1-carboxy-2-hydroxyethyl)carbamoyl)pyridin-1-ium; and 3-carboxy-1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium; nicotinic acid (niacin); and nicotinoyl-L-serine.
      In certain embodiments of synthesizing serdexmethylphenidate other compounds may be produced including, but not limited to, dichloromethyl (R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carboxylate; 3-((1-carboxy-2-(((1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium-3-carbonyl)-L-seryl)oxy)ethyl)carbamoyl)-1-((((S)-2-((S)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium; N,N-diethyl-N-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)ethanaminium; 1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)-2,6-dimethylpyridin-1-ium; (((S)-1,3-di-tert-butoxy-1-oxopropan-2-yl)amino)methyl (R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carboxylate; ((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidin-1-yl)methyl (R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carboxylate; 3-(((R)-1-carboxy-2-chloroethyl)carbamoyl)-1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium; and 3-(((S)-3 -hydroxy-1-isopropoxy-1-oxopropan-2-yl)carbamoyl)-1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium.

PATENT

US 20190381017

https://patentscope.wipo.int/search/en/detail.jsf?docId=US279620136&_cid=P10-KNB9P3-94207-1

Title

(EN) Compositions Comprising Serdexmethylphenidate Conjugates And Methods Of Use Thereof
front page image

Abstract

(EN)

The present technology is directed to one or more compositions comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof. The present technology also relates to one or more compositions and oral formulations comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof. The present technology also relates to one or more methods of using compositions comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof. The present technology additionally relates to one or more pharmaceutical kits containing a composition comprising serdexmethylphenidate conjugates and unconjugated d-methylphenidate and/or a pharmaceutically acceptable salt thereof.

PATENT

WO 2019241019

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019241019&_cid=P10-KNB9QS-94329-1

PAT

WO 2018107131

WO 2018107132

References

  1. ^ “Azstarys Prescribing Information” (PDF). United States Food and Drug Administration. Retrieved 18 March 2021.
  2. ^ “KemPharm’s KP415 and Serdexmethylphenidate (SDX) Prodrug to be Featured in Multiple Sessions at the AACAP 2020 Virtual Meeting”www.globenewswire.com.
  3. ^ Mickle T. “Prodrugs for ADHD Treatments: Opportunities & Potential to Fill Unmet Medical Needs” (PDF). Retrieved 15 November 2020.
  4. ^ Eric Bastings, MD (2 March 2021). “NDA 212994 Approval” (PDF). United States Food and Drug Administration. Retrieved 6 March 2021.
  5. ^ Van Arnum P (1 March 2012). “Meeting Solubility Challenges”Pharmaceutical Technology2012 (2): S6–S8. Retrieved 15 November 2020.
  6. ^ Mickle T. “Prodrugs for ADHD Treatments: Opportunities & Potential to Fill Unmet Medical Needs” (PDF). Retrieved 15 November 2020.
  7. ^ Braeckman R (1 October 2018). “Human Abuse Potential of Intravenous Serdexmethylphenidate (SDX), A Novel Prodrug of D-Methylphenidate, in Recreational Stimulant Abusers”Journal of the American Academy of Child & Adolescent Psychiatry57 (10): 176. doi:10.1016/j.jaac.2018.09.141. Retrieved 15 November 2020.

External links

Serdexmethylphenidate
Skeletal formula of serdexmethylphenidate
Clinical data
Other names KP484
License data
Routes of
administration
By mouth
ATC code
  • None
Legal status
Legal status
Pharmacokinetic data
Bioavailability 3%[1]
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C25H30ClN3O8
Molar mass 535.98 g·mol−1
3D model (JSmol)
  (verify)

//////////Serdexmethylphenidate, Azstarys, FDA 2021 APPROVALS 2021, SDX, KP 145,

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Leave a Reply

Your email address will not be published. Required fields are marked *