Golvatinib, ゴルバチニブ

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Golvatinib.png

ChemSpider 2D Image | Golvatinib | C33H37F2N7O4

Golvatinib

E-7050, cas 928037-13-2

1-N’-[2-fluoro-4-[2-[[4-(4-methylpiperazin-1-yl)piperidine-1-carbonyl]amino]pyridin-4-yl]oxyphenyl]-1-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide

1,1-Cyclopropanedicarboxamide, N-[2-fluoro-4-[[2-[[[4-(4-methyl-1-piperazinyl)-1-piperidinyl]carbonyl]amino]-4-pyridinyl]oxy]phenyl]-N’-(4-fluorophenyl)- [ACD/Index Name]
516Z3YP58E
928037-13-2 [RN]
9565
E7050, ゴルバチニブ
Molecular Formula: C33H37F2N7O4
Molecular Weight: 633.701 g/mol
  • N’-[2-fluoro-4-[2-[[4-(4-methylpiperazin-1-yl)piperidine-1-carbonyl]amino]pyridin-4-yl]oxyphenyl]-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
    UNII:516Z3YP58E
  • Originator Eisai Co Ltd

  • Class Amides; Antineoplastics; Cyclopropanes; Fluorobenzenes; Piperazines; Piperidines; Pyridines; Small molecules
  • Mechanism of Action Angiogenesis inhibitors; Proto oncogene protein c met inhibitors; Vascular endothelial growth factor receptor-2 antagonists
  • Discontinued Gastric cancer; Glioblastoma; Head and neck cancer; Liver cancer; Malignant melanoma; Solid tumours
  • 15 Nov 2013Eisai completes enrolment in its phase Ib/II trial for Head and neck cancer (second-line combination therapy, late-stage disease) in USA, United Kingdom, South Korea & Ukraine (NCT01332266)
  • 14 Nov 2013Phase-I/II clinical trials in liver cancer (first-line combination therapy, late-stage disease) in Italy & Ukraine (PO)
  • 01 Jul 2013Eisai completes a phase I trial in Solid tumours in Japan (NCT01428141)

Golvatinib is an orally bioavailable dual kinase inhibitor of c-Met (hepatocyte growth factor receptor) and VEGFR-2 (vascular endothelial growth factor receptor-2) tyrosinekinases with potential antineoplastic activity. c-Met/VEGFR kinase inhibitor E7050 binds to and inhibits the activities of both c-Met and VEGFR-2, which may inhibit tumor cell growth and survival of tumor cells that overexpress these receptor tyrosine kinases. c-Met and VEGFR-2 are upregulated in a variety of tumor cell types and play important roles in tumor cell growth, migration and angiogenesis.

Golvatinib has been investigated for the treatment of Platinum-Resistant Squamous Cell Carcinoma of the Head and Neck.
PATENT
WO 2007023768
WO 2008023698
WO 2008102870
PATENT
WO 2012133416

Method for producing a phenoxy pyridine derivative (3)

The present invention, hepatocyte growth factor receptor (Hepatocyte growth factor receptor; hereinafter, abbreviated as “HGFR”) inhibitory action, antitumor action, anti-tumor agents with such angiogenesis inhibitory activity and cancer metastasis inhibitory action, a cancer metastasis suppressing the method for producing a useful phenoxy pyridine derivatives as agents.

Patent Document 1 has a HGFR inhibitory activity, anti-tumor agents, useful phenoxy pyridine derivative as an angiogenesis inhibitor or cancer metastasis inhibitor has been disclosed.

Figure JPOXMLDOC01-appb-C000004


(In the formula, R 1, .R 2 and R 3 means such as 3-10 membered non-aromatic heterocyclic group, .R 4, R 5, R 6 and R 7 which represents a hydrogen atom, same or different, a hydrogen atom, a halogen atom, .R 8 to mean a C 1-6 alkyl group, .R 9 to mean a hydrogen atom or the like is and 3-10 membered non-aromatic heterocyclic group meaning .n is .X to mean 1 to 2 integer, it refers to a group or a nitrogen atom represented by the formula -CH =.)

As a method for producing the phenoxy pyridine derivative, to the Example 48 of Patent Document 1, N, N-dimethylformamide, triethylamine and benzotriazol-1-yloxytris (dimethylamino) or lower in the presence of a phosphonium hexafluorophosphate discloses that perform the reaction.

Figure JPOXMLDOC01-appb-C000005

Patent Document 2, as a manufacturing method suitable for industrial mass synthesis of the phenoxy pyridine derivative in the presence a condensing agent, production method of reacting an aniline derivative with a carboxylic acid derivative.

Figure JPOXMLDOC01-appb-C000006


(In the formula, R 1, is .R 2, R 3, R 4 and R 5, which means such good azetidin-1-yl group which may have a substituent, the same or different and each represents a hydrogen atom or fluorine It refers to an atom .R 6 means a hydrogen atom or a fluorine atom.)

Patent Document 3, another manufacturing method of the phenoxy pyridine derivative, there is disclosed the manufacturing method shown in the following scheme.

Figure JPOXMLDOC01-appb-C000007


(In the formula, R 1 means a 4- (4-methylpiperazin-1-yl) piperidin-1-yl group or a 3-hydroxy-1-yl group .R 2, R 3, R 4 and R 5 are the same or different, represents a hydrogen atom or a fluorine atom. However, among R 2, R 3, R 4 and R 5, 2 or 3 is a hydrogen atom .R 6 is a hydrogen atom or .R 7 to mean a fluorine atom, .Ar which means a protecting group for the amino group means a phenyl group.)

International Publication No. WO 2007/023768 International Publication No. WO 2008/026577 International Publication No. WO 2009/104520

PATENT
WO 2009104520
Example A-5: Preparation of N- (2-fluoro-4 – {[2 – ({[4- (4-methylpiperazin- 1 –yl) piperidin- 1 – yl] carbonyl} amino) pyridin- oxy} phenyl) -N ‘- (4-fluorophenyl) cyclopropane-1,1 dicarboxamide
[Formula
17] 4- (4-methylpiperazin-1-yl) piperidine-1-carboxylic acid [4- ( To a solution of N, N-dimethylformamide (1 ml) of 4-amino-3-fluorophenoxy) pyridin-2-yl] amide (100 mg) and 1- (4-fluorophenylcarbamoyl) cyclopropanecarboxylic acid (78 mg) Triethylamine (71 mg) and O- (7-Azabenzotriazol-1-yl) -N, N, N ‘, N’- tetramethyluronium hexafluorophosphate (HATU) (222 mg) were added and stirred at room temperature for 21 hours. A 1 N sodium hydroxide aqueous solution (2 ml) was added to the reaction solution, and the mixture was extracted with ethyl acetate (15 ml). After separation, the organic layer was washed with 5% brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain a residue. The residue was dissolved in ethyl acetate (3 ml) and extracted with 2 N hydrochloric acid (3 ml × 1, 2 ml × 1). The aqueous layer was rendered alkaline with 5 N aqueous sodium hydroxide solution (5.5 ml). After extraction with ethyl acetate and drying over anhydrous magnesium sulfate, the solvent was distilled off to give the title compound (87 mg).
1 H-NMR Spectrum (DMSO-d 6) .Delta. (Ppm): 1.22-1.33 (2H, m), 1.54-1.63 (4H, m), 1.68-1.78 (2H, m), 2.12 (3H , S), 2.12-2.40 (5H, m), 2.40-2.60 (4H, m), 2.68-2.78 (2H, m), 4.06-4.14 (2H, t, J = 8 Hz), 7.22 (2H, m), 6.60 (1H, dd, J = 2.4 Hz, 5.6 Hz), 7.00 (1 H, dd, J = 2.4 Hz, 11.2 Hz), 7.40 (1 H, s), 7.61 (2 H, dd, J = 5.2 Hz, 8 Hz), 7.93 J = 8.8 Hz), 8.13 (1 H, d, J = 5.6 Hz), 9.21 (1 H, s), 9.90 (1 H, brs), 10.55 (1 H, brs).

PAPER
Journal of Medicinal Chemistry (2017), 60(7), 2973-2982
Patent ID

Title

Submitted Date

Granted Date

US2015218130 CYCLOPROPYL DICARBOXAMIDES AND ANALOGS EXHIBITING ANTI-CANCER AND ANTI-PROLIFERATIVE ACTIVITIES
2015-01-22
2015-08-06
US9702878 METHOD FOR THE PROGNOSIS AND TREATMENT OF CANCER METASTASIS
2013-03-15
2015-10-15
US2016032400 METHOD FOR THE PROGNOSIS AND TREATMENT OF CANCER METASTASIS
2014-03-14
2016-02-04
US2016032399 Method for the Prognosis and Treatment of Renal Cell Carcinoma Metastasis
2014-03-13
2016-02-04
US2017369589 BINDING MEMBERS FOR HUMAN C-MAF
2015-12-11
Patent ID

Title

Submitted Date

Granted Date

US8759530 Method for producing phenoxypyridine derivative
2012-03-27
2014-06-24
US2010311972 METHOD FOR PRODUCING PHENOXYPYRIDINE DERIVATIVE
2010-12-09
US7855290 Pyridine derivatives and pyrimidine derivatives (3)
2008-12-25
2010-12-21
US7790885 Process for preparing phenoxypyridine derivatives
2008-09-04
2010-09-07
US2015362495 METHOD FOR THE DIAGNOSIS, PROGNOSIS AND TREATMENT OF PROSTATE CANCER METASTASIS
2013-10-09
2015-12-17
Patent ID

Title

Submitted Date

Granted Date

US9012458 Antitumor Agent Using Compounds Having Kinase Inhibitory Effect in Combination
2011-06-23
2013-05-16
US2009227556 RECEPTOR TYROSINE KINASE INHIBITORS COMPRISING PYRIDINE AND PYRIMIDINE DERIVATIVES
2009-09-10
US7998948 PHARMACEUTICAL COMPOSITION FOR TREATING ESOPHAGEAL CANCER
2009-07-09
2011-08-16
US2017101683 Method for the Prognosis and Treatment of Cancer Metastasis
2014-10-07
US2014194405 CYCLOPROPYL DICARBOXAMIDES AND ANALOGS EXHIBITING ANTI-CANCER AND ANTI-PROLIFERATIVE ACTIVITIES
2013-12-20
2014-07-10
Patent ID

Title

Submitted Date

Granted Date

US2016151406 COMBINATION CANCER THERAPY WITH C-MET INHIBITORS AND SYNTHETIC OLIGONUCLEOTIDES
2015-11-19
2016-06-02
US2014275183 AGENT FOR REDUCING SIDE EFFECTS OF KINASE INHIBITOR
2014-05-29
2014-09-18
US2016058751 COMPOSITION AND METHOD FOR TREATING CANCER
2014-03-25
2016-03-03
US2015297604 Combination Products with Tyrosine Kinase Inhibitors and their Use
2013-04-03
2015-10-22
US2015051210 Tyrosine Kinase Inhibitor Combinations and their Use
2013-04-01
2015-02-19
Patent ID

Title

Submitted Date

Granted Date

US8481739 NOVEL 3, 5-DISUBSTITUTED-3H-IMIDAZO[4, 5-B]PYRIDINE AND 3, 5- DISUBSTITUTED -3H-[1, 2, 3]TRIAZOLO[4, 5-B] PYRIDINE COMPOUNDS AS MODULATORS OF PROTEIN KINASES
2011-11-17
US8288538 NOVEL PYRIDINE DERIVATIVES AND PYRIMIDINE DERIVATIVES (3)
2010-03-25
US8377938 PHENOXYPYRIDINE DERIVATIVE SALTS AND CRYSTALS THEREOF, AND PROCESS FOR PREPARING THE SAME
2008-12-25
US2012232049 PYRIDINE OR PYRIMIDINE DERIVATIVE HAVING EXCELLENT CELL GROWTH INHIBITION EFFECT AND EXCELLENT ANTI-TUMOR EFFECT ON CELL STRAIN HAVING AMPLIFICATION OF HGFR GENE
2008-02-22
2012-09-13
US2012058985 CYCLOPROPYL DICARBOXAMIDES AND ANALOGS EXHIBITING ANTI-CANCER AND ANTI-PROLIFERATIVE ACTIVITIES
2011-04-29
2012-03-08
Patent ID

Title

Submitted Date

Granted Date

US2017240542 NOVEL 3, 5-DISUBSTITUTED-3H-IMIDAZO[4, 5-B]PYRIDINE AND 3, 5-DISUBSTITUTED-3H-[1, 2, 3]TRIAZOLO[4, 5-B] PYRIDINE COMPOUNDS AS MODULATORS OF PROTEIN KINASES
2017-03-09
US2015133449 NOVEL 3, 5-DISUBSTITUTED-3H-IMIDAZO[4, 5-B]PYRIDINE AND 3, 5-DISUBSTITUTED -3H-[1, 2, 3]TRIAZOLO[4, 5-B] PYRIDINE COMPOUNDS AS MODULATORS OF PROTEIN KINASES
2014-11-06
2015-05-14
US9815831 NOVEL 3, 5-DISUBSTITUTED-3H-IMIDAZO[4, 5-B]PYRIDINE AND 3, 5- DISUBSTITUTED -3H-[1, 2, 3]TRIAZOLO[4, 5-B] PYRIDINE COMPOUNDS AS MODULATORS OF C-MET PROTEIN, ETC
2013-02-27
2015-02-26
US8637672 Cyclopropyl dicarboxamides and analogs exhibiting anti-cancer and anti-proliferative activities
2012-07-26
2014-01-28
US2012252849 CYCLOPROPYL DICARBOXAMIDES AND ANALOGS EXHIBITING ANTI-CANCER AND ANTI-PROLIFERATIVE ACTIVITIES
2012-05-24
2012-10-04

///////////////Golvatinib, phase 2, ゴルバチニブ  ,

CN1CCN(CC1)C2CCN(CC2)C(=O)NC3=NC=CC(=C3)OC4=CC(=C(C=C4)NC(=O)C5(CC5)C(=O)NC6=CC=C(C=C6)F)F

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Leave a Reply

Your email address will not be published. Required fields are marked *