MK 5204

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

mk-5204

MK 5204

mk-5204

(1R,5S,6R,7R,10R,11R,14R,15S,20R,21R)-21-[(2R)-2-Amino-2,3,3-trimethylbutoxy]-20-(5-carbamoyl-1,2,4-triazol-1-yl)-5,7,10,15-tetramethyl-7-[(2R)-3-methylbutan-2-yl]-17-oxapentacyclo[13.3.3.01,14.02,11.05,10]henicos-2-ene-6-carboxylic acid.png

mk-5204

CAS No: 1207751-75-4
Product Code: BM178545

 (1R,5S,6R,7R,10R,11R,14R,15S,20R,21R)-21-[(2R)-2-amino-2,3,3-trimethylbutoxy]-20-(5-carbamoyl-1,2,4-triazol-1-yl)-5,7,10,15-tetramethyl-7-[(2R)-3-methylbutan-2-yl]-17-oxapentacyclo[13.3.3.01,14.02,11.05,10]henicos-2-ene-6-carboxylic acid

MW: 696g/mol

MW 695.97

C40 H65 N5 O5

PAPER

https://www.sciencedirect.com/science/article/abs/pii/S0960894X20304686

Abstract

Our previously reported efforts to produce an orally active β-1,3-glucan synthesis inhibitor through the semi-synthetic modification of enfumafungin focused on replacing the C2 acetoxy moiety with an aminotetrazole and the C3 glycoside with a N,N-dimethylaminoether moiety. This work details further optimization of the C2 heterocyclic substituent, which identified 3-carboxamide-1,2,4-triazole as a replacement for the aminotetrazole with comparable antifungal activity. Alkylation of either the carboxamidetriazole at C2 or the aminoether at C3 failed to significantly improve oral efficacy. However, replacement of the isopropyl alpha amino substituent with a t-butyl, improved oral exposure while maintaining antifungal activity. These two structural modifications produced MK-5204, which demonstrated broad spectrum activity against Candida species and robust oral efficacy in a murine model of disseminated Candidiasis without the N-dealkylation liability observed for the previous lead.

MK-5204: An orally active β-1,3-glucan synthesis inhibitor ...

MK-5204: An orally active β-1,3-glucan synthesis inhibitor ...

patent

https://patentscope.wipo.int/search/en/detail.jsf?docId=US43243783&tab=PCTDESCRIPTION&_cid=P22-KD34BU-17225-1

Patent ID Title Submitted Date Granted Date
US8188085 Antifungal agents 2010-05-06 2012-05-29
ungal infection is a major healthcare problem, and the incidence of hospital-acquired fungal diseases continues to rise. Severe systemic fungal infection in hospitals (such as candidiasis, aspergillosis, histoplasmosis, blastomycosis and coccidioidomycosis) is commonly seen in neutropaenic patients following chemotherapy and in other oncology patients with immune suppression, in patients who are immune-compromised due to Acquired Immune Deficiency Syndrome (AIDS) caused by HIV infection, and in patients in intensive care. Systemic fungal infections cause ˜25% of infection-related deaths in leukaemics. Infections due to Candida species are the fourth most important cause of nosocomial bloodstream infection. Serious fungal infections may cause 5-10% of deaths in patients undergoing lung, pancreas or liver transplantation. Treatment failures are still very common with all systemic mycoses. Secondary resistance also arises. Thus, there remains an increasing need for effective new therapy against mycotic infections.
      Enfumafungin is a hemiacetal triterpene glycoside that is produced in fermentations of a Hormonema spp. associated with living leaves of Juniperus communis (U.S. Pat. No. 5,756,472; Pelaez et al., Systematic and Applied Microbiology, 23:333-343, 2000; Schwartz et al., JACS, 122:4882-4886, 2000; Schwartz, R. E., Expert Opinion on Therapeutic Patents, 11(11):1761-1772, 2001). Enfumafungin is one of the several triterpene glycosides that have in vitro antifungal activities. The mode of the antifungal action of enfumafungin and other antifungal triterpenoid glycosides was determined to be the inhibition of fungal cell wall glucan synthesis by their specific action on (1,3)-β-D-glucan synthase (Onishi et al., Antimicrobial Agents and Chemotherapy, 44:368-377, 2000; Pelaez et al., Systematic and Applied Microbiology, 23:333-343, 2000). 1,3-β-D-Glucan synthase remains an attractive target for antifungal drug action because it is present in many pathogenic fungi which affords broad antifungal spectrum and there is no mammalian counterpart and as such, compounds inhibiting 1,3-β-D-Glucan synthase have little or no mechanism-based toxicity.

SIMILAR BUT NOT SAME

METHOXY EXAMPLE

Example 8

(1S,4aR,6aS,7R,8R,10aR,10bR,12aR,14R,15R)-15-[[(2R)-2-amino-2,3-dimethylbutyl]oxy]-8-[(1R)-1,2-dimethylpropyl]-14-[3-(methoxycarbonyl)-1H-1,2,4-triazol-1-yl]-1,6,6a,7,8,9,10,10a,10b,11,12,12a-dodecahydro-1,6a,8,10a-tetramethyl-4H-1,4a-propano-2H-phenanthro[1,2-c]pyran-7-carboxylic acid (EXAMPLE 8A) and (1S,4aR,6aS,7R,8R,10aR,10bR,12aR,14R,15R)-15-[[(2R)-2-amino-2,3-dimethylbutyl]oxy]-8-[(1R)-1,2-dimethylpropyl]-14-[5-(methoxycarbonyl)-1H-1,2,4-triazol-1-yl]-1,6,6a,7,8,9,10,10a,10b,11,12,12a-dodecahydro-1,6a,8,10a-tetramethyl-4H-1,4a-propano-2H-phenanthro[1,2-c]pyran-7-carboxylic acid (EXAMPLE 8B)

      Methyl 1,2,4-triazole-3-carboxylate (27.1 mg, 0.213 mmol) and BF 3OEt (54 μl, 0.426 mmol) were added to a stirred solution of Intermediate 6 (25.9 mg, 0.043 mmol) in 1,2-dichloroethane (0.43 ml). The reaction mixture was a light yellow suspension that was heated at 50° C. for 7.5 hr and then stirred at room temperature for 64 hr. The solvent was evaporated and the resulting residue was placed under high vacuum. The residue was dissolved in methanol and separated using a single HPLC run on a 19×150 mm Sunfire Prep C18 OBD 10 μm column by eluting with acetonitrile/water+0.1% TFA. The HPLC fractions of the faster eluting regioisomer were combined, the solvent was evaporated under reduced pressure, and the residue was lyophilized from ethanol and benzene to give EXAMPLE 8A (8.9 mg, 10.97 μmol) as a white solid. The HPLC fractions of the slower eluting regioisomer were combined, the solvent was evaporated under reduced pressure, and the residue was lyophilized from ethanol and benzene to give EXAMPLE 8B (1.5 mg, 1.85 μmol) as a white solid.

Example 8A

       1H NMR (CD 3OD, 600 MHz, ppm) δ 0.76 (s, 3H, Me), 0.76 (d, 3H, Me), 0.79 (d, 3H, Me), 0.83 (d, 3H, Me), 0.85 (d, 3H, Me), 0.88 (s, 3H, Me), 0.88 (s, 3H, Me), 0.89 (d, 3H, Me), 1.16 (s, 3H, Me), 1.20 (s, 3H, Me), 1.22-1.35 (m), 1.39-1.44 (m), 1.47-1.65 (m), 1.78-2.02 (m), 2.10-2.22 (m), 2.46 (dd, 1H, H13), 2.66 (d, 1H), 2.83 (s, 1H, H7), 3.48 (d, 1H), 3.50 (d, 1H), 3.53 (dd, 1H), 3.60 (d, 1H), 3.77 (d, 1H), 3.92 (d, 1H), 3.95 (s, 3H, COOMe), 5.48 (dd, 1H, H5), 5.61-5.68 (m, 1H, H14), 8.77 (broad s, 1H, triazole).
      Mass Spectrum: (ESI) m/z=697.42 (M+H).

Example 8B

       1H NMR (CD 3OD, 600 MHz, ppm) δ 0.76 (s, 3H, Me), 0.76 (d, 3H, Me), 0.79 (s, 3H, Me), 0.79 (d, 3H, Me), 0.82 (d, 3H, Me), 0.85 (d, 3H, Me), 0.88 (s, 3H, Me), 0.89 (d, 3H, Me), 1.13 (s, 3H, Me), 1.20 (s, 3H, Me), 1.22-1.36 (m), 1.39-1.44 (m), 1.47-1.55 (m), 1.59-1.65 (m), 1.72-1.96 (m), 2.10-2.22 (m), 2.46 (dd, 1H, H13), 2.78 (d, 1H), 2.84 (s, 1H, H7), 3.48 (d, 1H), 3.50 (d, 1H), 3.55 (dd, 1H), 3.62 (d, 1H), 3.93 (d, 1H), 3.98 (d, 1H), 3.99 (s, 3H, COOMe), 5.47 (dd, 1H, H5), 6.53-6.59 (m, 1H, H14), 8.14 (s, 1H, triazole).
      Mass Spectrum: (ESI) m/z=697.42 (M+H).
 

/////////////MK 5204, BM178545

NC(=O)c6ncnn6[C@@H]1C[C@]45COC[C@@](C)([C@H]1OC[C@](C)(N)C(C)(C)C)[C@@H]5CC[C@H]3C4=CC[C@@]2(C)[C@H](C(=O)O)[C@](C)(CC[C@@]23C)[C@H](C)C(C)C

CC(C)C(C)C1(CCC2(C3CCC4C5(COCC4(C3=CCC2(C1C(=O)O)C)CC(C5OCC(C)(C(C)(C)C)N)N6C(=NC=N6)C(=O)N)C)C)C

It's only fair to share...Flattr the authorPin on PinterestEmail this to someone
Buffer this pageDigg thisShare on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInShare on YummlyShare on VKShare on RedditShare on StumbleUponPrint this pageShare on Tumblr

Leave a Reply

Your email address will not be published. Required fields are marked *